

The Second Case for Automation: Safety

- Incidents of occupational injury for construction workers – 10% of all cases
- Worker's compensation insurance for steelworkers is 19.3% of wages

 Percentage of fatalities in construction industry (building erection) from falling is 43%

J. Ricles, PhD "Next Generation Steel Structures"

Talk given at Automated Steel Construction Workshop, NIST, June
2002

Integrated Data and Information Management

Construction Automation REQUIRES <u>Process</u> Integration ... and therefore seamless SENSOR integration

Total Station

GPS/Pseudolite

Site Spatial Measurement: Today and Tomorrow

Emerging Technologies

Fanning Laser

Non-Line-of-Sight Metrology

Some Measurement Sensors/Instruments in Construction

Automatic Compensator Levels

Digital Levels

Laser Levels

Digital Theodolites

Digital Theodolites EDM's

Total Stations

Pulsed Laser Plummets

Global Positioning System (GPS)

Code

Differential

Phase Differential / RTK

Pseudolites

Coordinate Measuring Lasers

Fanning Lasers

Pulsed laser rangers using LIDAR (Light Detection and Ranging)

Continuous wave laser rangers

Laser Trackers

LADAR (Laser Radar)

State Sensors

Accelerometers

Temperature Sensors

Humidity Sensors

Pressure Sensors

Proximity Sensors

(e.g., ultrasound, capacitance, etc.)

Encoders (angular & linear)

Displacement Sensors

Force Sensors

Torque Sensors

Strain Sensors

Velocity Sensors

1: The LADARS are Coming...

Construction Metrology & Automation Group

LADAR Information Content

COLOR
CODED
RANGE
& LOCATION
"Range
Image"

B&W RETURN INTENSITY

DIGITAL COLOR

March 7, 2000

March 9, 2000

Advanced LADAR applications

Object Ident and Pose Determination

Real-time Derivative Quantity Analyses – e.g. Terrain Traversability

#Start 11 6 5 #Exceed 3 Chem. MCX Editor #Vousi P. #Select File #MMMax #Image... #Vousi P. #Image ... #Image .

2: Self-Identification is Coming:

Bar Codes, RFID Tags, Smart Chips, Long-Range Auto Ident

Comp-TRAK

Comp-TRAK System

- Part ID via bar code
- Pose using Vulcan 3-D CMS
- Portable field computing
- Interactive web interfaces
- Project database
- Wireless communications
- Remote computing
- 3-D visualization

Welcome to the NIST Construction Component Tracking Website

To access and register information related to your component:

Go to

Bar Code Entry or RFID tag Entry

The 3D model provides visual queues for the location of key fiducial points necessary for component location and orientation acquisition.

compTRAK 2001 System Architecture for Steel Tracking

3: The Robots are Coming...

Jobsite Machines & Metrology Systems

Construction Management Simulator

Dynamic Data-Base HIGH SPEED DATA LINK (ATM) JOBSITE
WIRELESS
DATA
UPLINK
PACKET
STANDARD

NIST "Smart Pod" Real-time Generic Machinery Reference Platform

Construction Machine Tracking System

Early Success: Tele-op Control with Augmented Simulation 3D Interface

NIST Automated Steel Construction Project FY02 Major Accomplishments

Applied new laser-sensors for 3D robot pose estimation

Developed new visualization tools

Demonstrated
AUTONOMOUS 6-DOF
Beam Pick-and-place

CONTROLLER

LADAR-machine vision fusion for auto-docking trajectory generation

Solving the Auto pacement Problem: learning from Autonomous Mobility

XUV

HMMWV

Real-time Road following

Edged-based

Region-based

Machine Vision Based Guidance: Presently limited to effective use on quasi-2D problems. Solution: fuse with real-time LADAR data

Present Real-time State-of-Art for polygon scanning LADARs (10 Hz x 128 x 32 pixel)

Present Real-time State-of-Art for FPA LADARs (30 Hz+ x 32 x 32 pixel)

Project management, O&M notifications, billable quantity takeoffs, tele-op control interface, as-builts, database